Allora Decentralized Intelligence 2, 40-56; 2025 October 9 doi:10.70235/allora.0x20040

Context-Aware Inference via Performance Forecasting
in Decentralized Learning Networks

Joel Pfeffer'!, J. M. Diederik Kruijssen" !, Clément Gossart ', Mélanie Chevance = -2,
Diego Campo Millan"!, Florian Stecker ' & Steven N. Longmore 3

LAllora Foundation, > Cosmic Origins Of Life (COOL) Research DAO, ®Liverpool John Moores University

Abstract

In decentralized learning networks, predictions from many participants are combined to generate a network inference.
‘While many studies have demonstrated performance benefits of combining multiple model predictions, existing strategies
using linear pooling methods (ranging from simple averaging to dynamic weight updates) face a key limitation. Dynamic
prediction combinations that rely on historical performance to update weights are necessarily reactive. Due to the need to
average over a reasonable number of epochs (e.g. with moving averages or exponential weighting), they tend to be slow
to adjust to changing circumstances (e.g. phase or regime changes). In this work, we develop a model that uses machine
learning to forecast the performance of predictions by models at each epoch in a time series. This enables ‘context-
awareness’ by assigning higher weight to models that are likely to be more accurate at a given time. We show that adding a
performance forecasting worker in a decentralized learning network, following a design similar to the Allora network, can
improve the accuracy of network inferences. Specifically, we find that forecasting models that predict regret (performance
relative to the network inference) or regret z-score (performance relative to other workers) show greater improvement
than models predicting losses, which often do not outperform the naive network inference (historically weighted average
of all inferences). Through a series of optimization tests, we show that the performance of the forecasting model can
be sensitive to choices in the feature set and number of training epochs. These properties may depend on the exact
problem and should be tailored to each domain. Although initially designed for a decentralized learning network, using
performance forecasting for prediction combination may be useful in any situation where predictive rather than reactive
model weighting is needed.

1 Introduction

Models are naturally an approximation of real processes and may have their own unique data sources (private information),
assumptions, uncertainties and biases. Some models may also perform better than others in certain contexts, but worse
at other times, meaning there is generally no single best model that outperforms the others under all conditions. For this
reason, combining the predictions from multiple models (often termed forecast combination or aggregation) can lead to
substantial improvements in accuracy over the individual models.

Beginning with Reid (1968) and Bates & Granger (1969), numerous methods have been developed for model aggre-
gation (for reviews, see Clemen, 1989; Timmermann, 2006; Wang et al., 2023). The aim is to identify the optimal set of
weights to combine the predictions, such that the error of the resulting combined prediction is minimized. The success
of combination techniques naturally depends on the accuracy and diversity of the underlying models. If the set of models
is carefully chosen (i.e. to reduce bias and remove poorly performing models) then simple averaging strategies often per-
form well (mean, median, trimmed mean, etc.; e.g. Clemen & Winkler, 1986; Batchelor & Dua, 1995; Stock & Watson,
2004; Genre et al., 2013; Lichtendahl & Winkler, 2020; Petropoulos & Svetunkov, 2020). A natural extension to such
methods is to use linear combinations with non-equal weights (e.g. Newbold & Granger, 1974; Granger & Ramanathan,
1984; Kolassa, 2011). Such strategies have been extended by using machine learning (often termed meta-learning) to as-
sign combination weights (e.g. Prudéncio & Ludermir, 2006; Lemke & Gabrys, 2010; Montero-Manso et al., 2020; Kang
et al., 2022) or select the best model for a particular time series (e.g. Kiick et al., 2016; Gastinger et al., 2021; Talagala
etal., 2023).

Of course, simple averaging does not take into account potential changes in relative performance over time (e.g. due
to time-varying trends, seasonality changes or structural breaks), leading to the development of time-varying combination
methods. Time-varying approaches generally update the combination weights using recent historical data (e.g. with a
rolling window), such as through exponential weighting or moving averages (e.g. Bates & Granger, 1969; Diebold &
Pauly, 1987; Aiolfi & Timmermann, 2006), parametric methods with smooth transitions or switching (e.g. Sessions &
Chatterjee, 1989; LeSage & Magura, 1992; Deutsch et al., 1994; Elliott & Timmermann, 2005), and non-parametric
methods that do not impose functional forms on the coefficients (e.g. Terui & van Dijk, 2002; Chen & Maung, 2023).
Other methods involve learning weights using data restricted to be similar to the current time (such as from certain phases
in periodic data, Dudek, 2023). Recent work has also used neural networks to combine predictions at each epoch in a time
series, without estimating weights (Zhao & Feng, 2020).

Artificial intelligence, including machine learning, has revolutionized many fields. In the case of time-series predic-
tions, machine learning enables predictions to be made using data-driven approaches without detailed knowledge of the

https://doi.org/10.70235/allora.0x20040
https://orcid.org/0000-0003-3786-8818
https://orcid.org/0000-0002-8804-0212
https://orcid.org/0009-0006-6509-6041
https://orcid.org/0000-0002-5635-5180
https://orcid.org/0009-0000-0866-3691
https://orcid.org/0000-0002-7687-5116
https://orcid.org/0000-0001-6353-0170

Context-Aware Inference via Performance Forecasting 41

underlying processes, and now dominates forecasting competitions (Makridakis et al., 2020, 2022). With the availability
of numerous high-performing open source algorithms (e.g. Chen & Guestrin, 2016; Ke et al., 2017; Oreshkin et al., 2020)
and ever-increasing computing power, the barrier-to-entry is lower than ever.

However, even with such improvements, increasing machine learning performance requires increased computational
resources (Makridakis et al., 2020). Building on decades of research into model combinations, decentralized learning
networks address this issue by enabling participants to collaborate under complete data and model privacy by submitting
their own inferences or predictions to a network that generates a combined ‘network inference’ for the target variable
(Craib et al., 2017; Rao et al., 2021; Steeves et al., 2022; Kruijssen et al., 2024a). This allows diverse sets of models
to be combined independently of their composition (e.g. with differing algorithms, features and private data sets), a key
requirement of model combination strategies (Bates & Granger, 1969; Batchelor & Dua, 1995; Lichtendahl & Winkler,
2020; Kang et al., 2022). Of course, the question remains what the optimal method is for combining all predictions, and
potential issues with model combination are exacerbated in decentralized learning networks: there is no guarantee that
predictions are diverse and unbiased due to its decentralized nature; the set of models may change over time (e.g. due to
participants joining and leaving the network, or through the dynamic selection of subsets of participants, see Kruijssen
et al. 2024b). In such a case, simple averages of predictions will perform poorly, and dynamic weighting is required as
the network evolves over time.

A number of strategies have been developed to weight predictions in decentralized networks, such as stake-weighted
averaging (Craib et al., 2017) and peer-ranked weights based on historical performance (Rao et al., 2021; Steeves et al.,
2022). However, such methods cannot identify which models are likely to be most accurate in different conditions (e.g.
seasonality changes or structural breaks). The Allora network (Kruijssen et al., 2024a) solves this problem by introducing
workers that forecast the expected performance of worker inferences at each epoch. The aim of the forecasting workers
is not to determine a constant or slowly varying set of weights for each worker (e.g. based on historical performance), but
to learn under which conditions each worker may be more accurate (i.e. context awareness). Given the non-uniqueness
of weights at a single epoch and the time-evolution of the participant set (implying that the optimal weights will change),
the forecasting workers predict performance (losses, regrets, or regret z-scores) rather than weights. The predicted losses
are then transformed into weights by the network through an optimized sigmoid function (often referred to as a ‘scaled
logistic gate’) to create ‘forecast-implied” inferences (Kruijssen et al., 2025).

In this work, we describe a forecasting model designed for the Allora network, although the principles could be
extended to any model combination problem where predictive rather than reactive weighting is important. The paper is
structured as follows. In §2, we describe the relevant structure of the decentralized learning network and design of the
forecasting model, including machine learning models, target variables and feature sets. In §3, we test the forecaster
model against a series of synthetic benchmarks, aiming to optimize the model for context awareness. We then extend the
benchmark tests to experiments with real data from the Allora testnet in §4. Finally, in §5 we discuss the findings and
summarize the conclusions of the paper.

2 Forecaster design

The goal of this work is to design a forecasting model that functions within a decentralized learning network and can
identify when inferences from each participant are likely to be more accurate than others, i.e. is ‘context aware’, such that
it can outperform a ‘naive’ network inference (a historically weighted average of all inferences). There are a number of
critical elements to consider in the design of such a forecaster model, such as the underlying machine learning model, the
forecasted variable, and the feature set. These elements depend on the learning network design and the target variable.

2.1 Decentralized learning network

We consider a decentralized learning network based on the Allora network (Kruijssen et al., 2024a). Allora consists
of ‘topics’, which are sub-networks within which the participants collaborate to achieve a single common objective. A
topic consists of V; ‘inference workers’ providing inferences and Ny ‘forecasting workers’ providing forecasts for the

performance of the inference workers. At each epoch i € {1,..., N.}, a network inference I; is generated as follows.
Each inference worker j € {1,..., N;} submits an inference
Iij = M;;(Dyj),)]

using its own dataset D);; and model M;;. Once the true value becomes available, the true inference loss L;; and instan-
taneous regret I2;; = L; — L;; are evaluated against the ground truth using the loss function for the topic, where L; is the
true loss of the network inference.

For each inference I;; submitted by inference worker j, each forecasting worker k € {1,..., N¢} submits forecasted
losses

log L;ji = M;jk(Diji), 2

ADI 2, 40-56 (2025)

42 Pfeffer et al.

using its own dataset D;;; and model Mj;;,. For each forecasting worker £, the raw inferences I;; are combined with the
forecasted losses L, to generate a forecast-implied inference

2o wikdy;

Ly = <=— 3)
2 Wijh
where the weights are a function of the forecasted losses w; jx (L;j)-
To calculate the weights w;, the forecasted losses are first converted to approximate forecasted regrets
R, = log Li—1 — log Ly,)

using the network loss at the previous epoch £;_; (this approximation is necessary, because the network loss of the
current epoch is not available yet). Next, to ensure consistency from epoch to epoch, the forecasted regrets are converted

to normalized regrets as
A Rijk
Ryjp=—29% (3)
Yo (Rigr) + €
where o (R;;1) is the standard deviation of forecasted regrets and ¢ is a small value added to avoid division by zero.
Finally, the approximate regrets are converted to weights as

wijr = ¢'(Riji), (6)

using a sigmoid weighting function
/ p
T) = —— 7
¥(0) = —mte)
with fiducial values p = 3 and ¢ = 0.75, where c is the transition point between positive contributions with a constant
non-zero weight and negative contributions with a scaling w;;z o< Li_jﬁ. In this way, inferences that are forecasted to be
more accurate than the network at the previous epoch are given more weight than those forecasted to be less accurate.
The inferences (both raw and forecast-implied) from all workers [€ {1,..., N; + N} are combined to generate the

network inference

2 waly

- T .

Zl Wi
where the weights w;; = ¢'(R,—1,) are set by an exponential moving average (EMA) of each worker’s actual regret
at the previous epoch R;_1; (the EMA uses a fiducial value o = 0.1, Kruijssen et al., 2025). For reference, a ‘naive’
network inference I; is also calculated using only the raw inferences (i.e. omitting the forecast-implied inferences from
Equation 8).

In practice, to improve network performance (both in terms of accuracy and computational cost), the set of inferences
combined to generate network inferences may be limited to an ‘active set’ (typically 32 inferers on Allora) through merit-
based sortition (Kruijssen et al., 2024b). In that case, forecasts are only generated for the active set of inferers.

I ®)

2.2 Forecaster model

We use the gradient-boosted decision tree models XGBoost (Chen & Guestrin, 2016) and LightGBM (Ke et al., 2017)
as a machine-learning basis for the forecaster model. For tabular data (samples with the same set of features), decision
tree models typically outperform and have shorter training times than deep neural networks (e.g. Shwartz-Ziv & Armon,
2022; Borisov et al., 2024). For both XGBoost and LightGBM, we perform automated hyperparameter optimization with
Optuna (Akiba et al., 2019).

We consider two main structures for the forecaster model: whether to train a single global forecasting model (with
inferer ID as a feature to enable context awareness), or whether to train independent models for each inferer. Both methods
have their own strengths and weaknesses. A global model may be able to combine information from similar workers to
enable stronger predictions from an increased sample size, but may also be susceptible to training on population-averaged
performance, rather than identifying context from individual workers. Conversely, a series of per-inferer models prevents
crossover of information between different workers, but must train on smaller amounts of data and has a higher overhead
(e.g. increased training times). To maximize context awareness, the fiducial setup of the forecasting model uses a series
of per-inferer models trained on the active set of inferers, but uses a global forecasting model as a fallback for inferers yet
to be trained (those with insufficient data, such as new inferers).

2.2.1 Forecaster target variable

The Allora network was originally designed such that forecasting models predict the losses for each inferer, which are
then used to define the weights of a ‘forecast-implied inference’ that combines the raw inferences through a weighted sum.
In the experiments carried out for this study, we find that different forecaster target variables can be optimal in different
circumstances. Therefore, we consider three main forecaster targets, each with their own strengths and weaknesses:

ADI 2, 40-56 (2025)

Context-Aware Inference via Performance Forecasting 43

Loss Forecasting losses has the benefit that the loss of each inference is independent; it is simply a measure of the
accuracy of an inference. However, losses can be challenging to predict if there is high variability. As losses require
conversion to regrets for the weighting function, and regrets must be approximated using the network loss at the
previous epoch (Equation 4), significant epoch-to-epoch changes in the network loss can also degrade forecaster
performance if the weighting function is non-linear with regret (the Allora network adopts a sigmoid form).

Regret Forecasting the regrets of inferences bypasses the loss-to-regret conversion (Equation 4) and potentially provides
a more stable property to predict: it is only performance relative to the network that must be forecasted, rather than
the absolute performance of each inferer (loss). A potential disadvantage is that regret can depend upon the makeup
of the network: if the set of inferers at each epoch changes significantly over time, the regret of an inferer could
change without a corresponding change in inference accuracy.

Regret z-score Rather than forecasting performance relative to the network inference (regret), the regret z-score consid-
ers performance only relative to other inference workers. Similar to normalized regrets (Equation 5), we define the
regret z-score for each inference as

5 Bij— (Ryj)
1] T Y
T oj(Rij) te

where (R;;) and o;(R;;) are the mean and standard deviation of all inferences at epoch ¢, and € is a small value
to avoid division by zero. Note that the network loss cancels out, so that Z;; is independent of £;_;. The regret
z-score then replaces the normalized regret in the weighting function: w;j, = ¢'(Z; ;1 + 0z), with a fiducial offset
0z = —1 to shift the transition point in the weight function (Equation 7), which was found to improve performance.
As with forecasting regrets, the regret z-score may be affected by changes in inferer composition, particularly in
cases of small numbers of inferers where the standard deviation of regret is poorly defined. As regret is simply
negative log loss with an offset, the z-score target could be equivalently written in terms of negative losses.

)

These considerations suggest that, rather than a single best model, a suite of forecasters with different target variables may
be required to adapt to different situations.

2.2.2 Feature set

We consider two types of feature data that the models will use to make predictions. First, we construct a baseline dataset
that contains properties from the network (e.g. inferer performance metrics such as losses and regrets). Secondly, we
assume the existence of a ‘private’ dataset that contains additional information compiled by the forecaster model builder.
This data set is domain-specific (e.g. market prices for the particular topic).

Baseline data The complete set of baseline properties are: inferer ID, worker inference values (current epoch), worker
losses and regrets (previous epoch), network loss (previous epoch), worker rewards and performance score (previous
epoch; see §4.1 of Kruijssen et al. 2024a). This set is then extended through feature engineering to capture the key
dynamics of these properties. We apply the following transformations to the worker inferences, losses and regrets:
gradient, momentum, acceleration, exponentially-weighted mean and standard deviation, rolling mean and standard
deviation, difference from moving average, and autocorrelation (see below). We also consider the mean, standard
deviation and z-score of the losses and regrets of all workers at each epoch. For the exponentially-weighted and
rolling properties, we consider the epoch span as a variable to be optimized for the particular topic, but generally
find short spans provide best performance (a combination of 3 and 14 epochs are used by default).

Private data The set of private features depends on the particular property that is being predicted, but should generally
benefit from being similar to the features used by workers to generate inferences. For simplicity, our tests consider
network topics that predict prices in financial markets (though this is by no means a restriction). In this case, the
base set of private features should be the historical properties of an asset (e.g. open, high, low, close prices and
volume). As above, this set can be extended through feature engineering to capture key market dynamics, e.g.
moving and exponentially weighted averages, momentum, percentage change, volatility, Bollinger Bands, price
ratios. Many of these quantities generalize well to any other online target variable.

We use autocorrelation (correlation of values in a time series separated by a given lag) as part of feature engineering to
identify any regular periodic signals in the feature data. Where correlations at given lags are significant, features shifted by
those lags are added to the feature set (for lags > 2 epochs, since features at the previous epoch are already included). In
practice, we use both the autocorrelation function (ACF) and partial autocorrelation function (PACF) to identify significant
lags. The PACF controls for correlations due to multiples of shorter lags (e.g. factors of two) and we find it can identify
lags that are not significant in the standard ACF. Therefore, we only include lags which have a significance > 99% in both
ACF and PACF.

A large number of feature variables can reduce the performance of a model by increasing training and prediction
times due to increased complexity, and increasing the risk of overfitting, such that the model cannot generalize. First,

ADI 2, 40-56 (2025)

44 Pfeffer et al.

Per-inferer: Inferer alloO (Raw - LightGBM) Per-inferer: Inferer allol (Raw - LightGBM)
20 1RMSE: 0.659 ——— RMSE: 0.6546 — ue
1.5 - —— Predicted 2 —— Predicted
1.0 A
1 -
o 0.57 o
=) =
s | g
g OO 8 9]
[)] (o]
(9] (0]
o —0.5 o
_1 -
-1.0 w
_20 -
2000 2020 2040 2060 2080 2100 2000 2020 2040 2060 2080 2100
Epoch Epoch

Figure 1: True and predicted regret values for two ‘inferers’ in a simple periodic (sinusoidal) outperformance test. In the
left panel the sine function has an amplitude of 1 and period of 10 epochs, while in the right panel the sine function has
an amplitude of 1.5 and period of 17 epochs. A random noise term (uniformly sampled € [—1, 1)) is added at each epoch
for both inferers. In both cases, the default per-inferer forecasting model reasonably identifies both the amplitudes and
periods of the underlying sinusoidal evolution for each worker.

we remove any features with zero variance. Next, we identify pairs of highly correlated features (with Pearson product-
moment correlation coefficients > 0.95) and keep only the feature that has the strongest correlation with the forecaster
target variable. These steps typically reduce the feature set from ~ 80 to =~ 50 features. We experimented with other
forms of automated feature set reduction (e.g. recursive feature elimination, Boruta selection, variance thresholds), but
found they did not adequately identify features with the highest importance in the machine learning models.

We use 1000 epochs as the default number of training epochs. We find that this provides a reasonable balance between
training time, having sufficient data for training, and focusing on recent data. Using a much larger number of training
epochs can degrade forecaster performance if the earliest information is no longer relevant for the current inferer models
(e.g. if inferer models have since improved or worsened).

3 Synthetic benchmarks

We begin testing the forecaster models with a series of synthetic benchmarks of varying levels of complexity. The aim is to
use the tests to identify the best performing forecaster model(s) (target variable, global/per-inferer model) and the optimal
set of features. In these benchmarks, the forecasters do not contribute to the combined network inferences so that a direct
comparison can be made between different forecasting models. We show results using the LightGBM machine learning
model, but the conclusions are unaltered when comparing results from XGBoost. For all tests we use a mean-squared
error (MSE) loss function.

3.1 Periodic outperformance

In the first test, the regrets for two inferers follow a simple sinusoidal evolution with an additional random component
(uniform random errors in the range £1). The sine function for each inferer has a different amplitude (1 and 1.5) and
period (10 and 17 epochs). Eight other inferers with only random regrets (in the range +1) are added as a baseline. The
test period is 100 epochs with 1000 epochs used for training. Though rather unrealistic, this test helps to understand the
behaviour in predictions from different forecasting models.

The evolution of the true and predicted regrets for the two periodically outperforming workers (allo0 and allol) are
shown in Figure 1 for the default per-inferer forecaster model. In the models for both outperforming inferers, autocor-
relations of the regrets tend to be the most important features, along with other relative change variables (momentum,
acceleration, percentage change). For this test, models without autocorrelation show reduced performance, with the root
mean square error (RMSE) of the models increasing to 0.709 and 0.669 (compared to 0.659 and 0.655 for inferers alloO
and allol, respectively). This is due to the model undershooting the peaks of the sine function (predicting ~ 0.7 instead of

ADI 2, 40-56 (2025)

Context-Aware Inference via Performance Forecasting

Global model (LightGBM)

True Regret

Per-inferer model (LightGBM)

Inferer alloO e Inferer alloO 7
5 Inferer allol /' 2 Inferer allol /'
1 inferer Median /' O inferer Median ,/
——- ldeal Fit g ——- Ideal Fit 8/
1A 14
- +J
o o
(o] (o]
[J] [J]
o <
3 0 5 o
9 o
el °
9] [J]
a a
_1 . _1 .
—2 4 —2 4
il RMSE: 0.6275 il RMSE: 0.6206
-2 -1 0 1 2 -2 -1 0 1 2

True Regret

45

Figure 2: Comparison of true and predicted regrets in the sinusoidal evolution test for the global (left panel) and per-
inferer (right panel) forecasting models. Small data points show individual values for each inferer at each epoch and
large open squares show the median of true and predicted regrets for each inferer. Coloured dashed lines show linear fits
for each inferer, using Huber regression to minimize effects of outliers. The black dashed line shows the ideal one-to-one
relation. Though the overall performance is similar (as indicated by the RMSE in each panel), the global model shows
some confusion in predicted regrets between the two ‘outperforming’ workers (allo0 and allol, e.g. at values < 0), while
the per-inferer model clearly distinguishes their predictions (clear bands at —1 and —1.5, respectively).

~ 1), but otherwise it reasonably predicts the sinusoidal evolution through the value at the previous epoch, exponentially-
weighted and rolling mean, gradient and percentage change.

In Figure 2, we compare the true and predicted regrets for all inferers for the global forecasting model (left panel) and
the per-inferer model (right panel). We consider this comparison as the ‘context awareness’ test, i.e. it tests the ability
of the forecasting model to predict outperformance or underperformance by the inferers. In this test, the global model
and the per-inferer model have very similar overall performance (RMSE = 0.628 and 0.621, respectively). However,
the per-inferer model performs better for the outperforming inferers (RMSE = 0.659 and 0.655 for inferers alloO and
allol, respectively) than the global model (RMSE = 0.709 and 0.669 for inferers alloO and allol, respectively), which
can also be seen in the increased gradients for the linear fits in the figure. The difference in the overall RMSE is due to
the decreased scatter for the random inferers in the global model, for which the optimum strategy is simply to predict
the mean. This indicates that the per-inferer model is better at distinguishing workers, which can (for example) be seen
in Figure 2 by comparing the predicted regrets at values < 0 for inferers alloO and allol: the per-inferer model shows
clear banding for both workers, while the global model shows more confusion between the predictions for the workers. In
contrast, the global model can benefit from an increase in the training data set by stacking results for similarly-performing
inferers.

As an extension to the sinusoidal regrets test, in Figure 3 we compare results for an inferer with outperformance at
fixed intervals (41 in regret every 10 epochs) and otherwise random performance (uniform random regrets between —0.5
and 0.5). This test models an inferer that outperforms at regular times (e.g. time of day or day of the week). The figure
compares results for a forecasting model with and without autocorrelation (left and right panels, respectively). Naturally,
in this test the model with autocorrelation (RMSE = 0.333) significantly outperforms the model without autocorrelation
(RMSE = 0.474). For the model without autocorrelation, the most important features are exponentially-weighted and
rolling means of the regret, which fail to sufficiently identify the outperformance epochs.

As for the sinusoidal test, when a second outperforming inferer is added with relatively similar outperformance peaks
(+1.25 in regret every 17 epochs), the global forecasting model does not distinguish the amplitude of the outperformance
peaks between the two inferers, predicting +1 in both cases. The global model generally distinguishes the differing
periods of the workers, but occasionally misses outperformance epochs (particularly the second inferer with a period of
17 epochs). By design, the per-inferer model cannot confuse the amplitudes or periods for either worker.

ADI 2, 40-56 (2025)

46 Pfeffer et al.

Per-inferer: Inferer alloO (Raw - LightGBM) Per-inferer: Inferer alloO (Raw - LightGBM)
1.50 7YRMSE: 0:3329 —— True 1.50 7RMSE: 0:4738 —— True
—— Predicted —— Predicted
1.25 A 1.25 A
1.00 A 1.00 A
o 0.754 o 0.754
= 3
© ©
Z 0.50- Z 0.50-
o o
g g
o 0.25 A o 0.25 A
0.00 4 0.00 A
—0.25 A —0.25 A
—0.50 - —0.50
1000 1020 1040 1060 1080 1100 1000 1020 1040 1060 1080 1100
Epoch Epoch

Figure 3: Fixed interval periodic outperformance test (+1 in regret every 10 epochs), with (left) and without (right)
autocorrelation for the per-inferer forecasting model. This test shows that autocorrelation is crucial to identify the out-
performance epochs.

3.2 Contextual outperformance

As a more realistic test, we now consider an experiment that uses geometric brownian motion to generate true val-
ues, with an initial value of 1000 and volatility of 0.01. The drift parameter is randomly modulated between values of
[—0.01,0,0.01] (downward drift, no drift and upward drift, respectively) for periods with a typical length of 5 epochs
(with each period length drawn from a Poisson distribution with an expectation value of 5). The zero drift periods have a
probability of occurrence that is three times higher than the drift periods. As in §3.1, we use 1000 epochs for training and
100 epochs for testing.

The top panel of Figure 4 shows the evolution of the ground truth generated for the contextual outperformance test.
The shaded regions highlight the periods with a non-zero drift parameter (where blue indicates downward drift and red
indicates upward drift). As shown in the figure, periods of some drifting can occur even with a drift parameter of zero (at
an epoch = 1035), but they tend to have shorter durations than the controlled drift periods.

We then create ten inferers, three of which outperform in different circumstances (allo0: downtrends, allol: uptrends,
allo2: no drift), along with seven control inferers which predict random log returns (i.e. the natural logarithm of the ratio
of the new price to the previous price). We choose to generate the predictions in log returns due to its compounding effect
across a time series. Each of the inferers have random log returns drawn from a Gaussian distribution with the standard
deviation set by the volatility of the true values scaled by a random factor depending on their outperformance. During
their accurate periods, the three outperforming inferers use a random factor in the range 0.1-0.3, with the random returns
added to the true returns, and otherwise predict only random returns with a random volatility factor in the range 0.5-1.
Four random inferers predict only random returns at all times, with a random volatility factor in the range 0.2-1.2. The
final three random inferers use a random volatility factor in the range 0.5-1 to predict returns relative to an EMA of the
ground truth (with spans 5, 7 and 9). This behaviour was chosen to drive delayed reactions during drift periods, such that
they become under-performing workers.

The bottom panel of Figure 4 compares the ground truth values (solid blue line) with the individual inferences (grey
points), naive network inference (dashed red line) and forecast-implied inference from the default per-inferer model
predicting regret z-scores (solid orange line). For this comparison, all inferences were transformed from log returns back
to absolute price space. In this test, the forecast-implied inference (mean log loss log L = 0.57) clearly outperforms
the naive network inference (log L = 1.09). This is most noticeable during the controlled drift periods, where the
naive network inference lags behind the forecast-implied inference (e.g. epochs 1005-1010, 1020-1030, 1040-1045, 1085-
1090) due to its delayed reaction to update the inferer weights (i.e. the naive network inference depends on the historical
performance of the infererence workers, see §2.1). By contrast, the forecasting model identifies the outperforming workers
during drift periods, giving them higher weights in the forecast-implied inference.

ADI 2, 40-56 (2025)

Context-Aware Inference via Performance Forecasting 47

420 A
400 A
o 380 A
=
s
360
340 A
—— Ground truth
Down drift
Up drift
320 L T T T T T T
1000 1020 1040 1060 1080 1100
Epoch
—— Ground truth
TNA ——- Naive network inference (log Loss: 1.0853)
420 A 1 ooW Forecast-implied inference (log Loss: 0.5673)
Q\ Raw inferences
\\\
400 A ‘\\\ '
’
¢ ,'\&\w’\ﬂ
\ T A
gl SN e
(] v, \ NN 5A° A
E oo AL R [TR,
1 [} Y
] \ oo f!
360 v\\ i
N/
340 A
320 A
1000 1020 1040 1060 1080 1100
Epoch

Figure 4: Top: Ground truth for the contextual outperformance test, with shaded regions highlighting the periods with a
non-zero drift parameter (blue: downward drift; red: upward drift). Bottom: Comparison of individual inferences (grey
points), naive network inference (red dashed line), and forecast-implied inference (solid orange line) with the ground
truth (solid blue line). The forecast-implied inference was generated using forecasted z-scores from the default per-inferer
forecaster model. The mean log loss of the naive network and forecast-implied inferences are indicated in the legend, with
the forecast-implied inference (log L = 0.57) clearly outperforming the naive network inference (log L = 1.09).

3.2.1 Context awareness

Figure 5 compares the true and predicted values for default per-inferer forecasting models with the three forecasting
target variables: log losses (left panel), regrets (middle panel) and regret z-scores (right panel). The forecasters for all
targets reasonably predict the medians for each inferer (open squares), such that they approximately follow the ideal
one-to-one line in each panel (dashed black line), but the models have varying levels of success in predicting the out- or
underperformance of each worker.

The figure highlights the potential benefits or weaknesses of each target variable. For example, although the returns
for allo9 (cyan points) are random and lead to unpredictable losses (left panel, with a linear fit gradient ~ 0), converting to
regrets enables a limited form of context awareness (middle panel, positive gradient in predictions relative to true values).
In turn, the loss model tends to underpredict the losses (i.e. overpredict the performance) for the random workers at large
true losses (> 1). However, the underperformance epochs (i.e. largest losses during drift periods) for the inferers with
EMAs on the true values (red, purple and brown points) become somewhat less predictable with a regret target than with
a loss target, resulting in an overall performance decrease (RMSE = 1.43) relative to the loss model (RMSE = 1.14).

ADI 2, 40-56 (2025)

48 Pfeffer et al.

Per-inferer model (LightGBM) Per-inferer model (LightGBM) Per-inferer model (LightGBM)
34 7 B
RMSE: 1.1410 ;/ 2] Inferer allo04_EMA... ,/' 3 Inferer allo07_ran... ,’,
5 v L‘/\f” Inferer allo05_EMA... Pl Inferer allo08_ran... ,/
R ° ¢ e /
DS Inferer allo06_ran... e 2 Inferer allo09_ran... ,/
>] Inferer Median ,/' 0 Inferer Median Vi P
11 - g --- Ideal Fit 7 @
P B g
-4 4
§ 0 ___::_;u—/‘ﬁ' e ® ;5), v 1
5 le-rmzIIFET 5% =]
o - % ° a
8 -14-= L o] N
- 4 = - 01
o ’ o Q
- ’ o ©
-2 ,/ Inferer allo00_dow... a 5
’/ Inferer allo01_upt... g 14
34 §a Inferer allo02_cra...
e Inferer allo03_EMA...
e 0 Inferer Median
—44] 64 -2
e ~=- |deal it % RMSE: 1.4321 RMSE: 0.8438
2 T T T T T T T VJ T T T T T T T T T T T T
-4 -3 =2 -1 0 1 2 3 -6 -4 =2 0 2 4 -2 -1 0 1 2 3
True Loss True Regret True Z-score Regret

Figure 5: ‘Context awareness’ of forecasting models in the contextual outperformance test. Panels show the true versus
predicted properties for forecasters predicting log losses (left), regrets (middle) and regret z-scores (right). Point and line
styles are as in Figure 2. The legend is split over the three panels; all inferers are present in each panel.

Changing from predicting regrets (middle panel) to the z-score of regrets (right panel) rescales the target values such
that they become more predictable in epochs of outperformance (z-scores = 1) for the outperforming workers (allo0,
allol and allo2), while retaining the predictable underperformance of inferers with EMAs on the true values (as with a
loss target). As with the loss model, the z-score model tends to overpredict the performance of the random workers (when
the true z-score is < 0). However, the performance gain dominates, making the z-score models the most performant
models in this experiment (RMSE = 0.84).

3.2.2 Parameter optimization

Due to the variability of forecasts for different seeds in hyperparameter optimization, it is difficult to draw conclusions
about the best forecasting model and feature set from single tests. Instead, multiple tests must be performed to compare
the distribution in performance metrics. To do so, in Figure 6 we repeat the contextual outperformance tests 100 times
for each of the different target variables (loss, regret, z-score) and EMA/rolling property spans for the feature variables (9
combinations, indicated in the title of each subpanel). We use the mean log loss of the forecast-implied inference relative
to the true values as the property to be minimized. Here, we have increased the number of testing epochs to 200 to reduce
the impact of stochasticity in the initial condition generation on the testing period.

The best forecasting model for this test is the per-inferer model predicting z-scores with short EMA spans ([3] with
log loss = 1.547, with [7] and [3,7] being the next best span sets with only marginally larger median log losses). For all
span sets, z-scores are consistently the best performing target variable, followed by regrets and then losses. This indicates
that relative performance (z-score or regret) provides a simpler target to forecast than absolute performance (losses).

Losses are the only target variable where the global model consistently outperforms the per-inferer model (which
often does not outperform the naive inference), potentially as the reduced scatter in predictions in the global model
has more impact than the increased context awareness in the per-inferer model for this test. Models with regret as the
target (particularly global models) are relatively insensitive to the choice of span set and performance is relatively similar
between the global and per-inferer models, though the best regret model is still a per-inferer model (with span set [7,14]).
Interestingly, global models with loss and z-score targets tend to prefer a combination of longer spans (the best sets are
[14,30] for losses and [3,14,60] for z-scores) than the per-inferer models (best span set is [3]), highlighting the need for
feature sets to be adapted to the particular model architecture.

4 Experiments with the Allora network

Although controlled experiments are valuable for interpreting test results and pinpointing model weaknesses or areas of
improvement, optimizing the forecasting models for real-world performance requires live data. In this section, we repeat
the optimization tests from §3.2, but instead using data from the Allora testnet from a topic predicting ETH/USD prices
in 5 minute intervals. The tests use data obtained between dates 2025-06-02 and 2025-06-23 with six inference workers.

4.1 Span parameter optimization tests

Figure 7 repeats the tests from Figure 6 using the live ETH/USD price topic. As before, we use 1000 training epochs for
the forecasting models. However, because it is not a controlled experiment, we have increased the testing period to 500
epochs to further reduce sensitivity to the exact testing period.

ADI 2, 40-56 (2025)

Context-Aware Inference via Performance Forecasting 49

Spans=[3] Spans=[7] Spans=[3,7]
= = Naive per-inferer = = Naive per-inferer
194 —— global 194 —— global 194
1.84 1.89 1.8

log Loss
-
N
|
\'
log Loss
=
o
L
log Loss
-
~

‘r _
\
1.6 J_ \ 1.6 164 ——
154 <1/ 154 A 4 154 == Naive per-inferer
—— global
Regrets Losses Z-score Regrets Losses Z-score Regrets Losses Z-score
Spans=[3,14] Spans=[3,14,60] Spans=[3,30]
= = Naive per-inferer
1.9 global 1.9 1.9
1.8 Z 1PN 1.8 1 1.8
a @ w
o o o
) - gl
_8117< _— _8’1'7‘ _8’1'7‘
T
1.6 \ 1.64 1.6 A
15 154 == Naive per-inferer 154 == Naive per-inferer
—— global —— global
T T T T T T T T T
Regrets Losses Z-score Regrets Losses Z-score Regrets Losses Z-score
Spans=[7,14] Spans=[7,30] Spans=[14,30]
1.94 1.99 1.9

1.8 —|— 1.8 T 1.8 y N
//J_ 1 1.7 4

« " 0
a I I
o o o
- — —
o 1.74 o 1.7 o
o o - o AR

1.6 N\ 1.61 1.6

15 == Naive per-inferer 154 == Naive per-inferer 154 == Naive per-inferer

—— global —— global —— global
T T T T T T T T T
Regrets Losses Z-score Regrets Losses Z-score Regrets Losses Z-score

Figure 6: Optimization tests for the LightGBM model (XGBoost shows similar trends) with the contextual outperformance
benchmark, with log loss of the (forecast-implied) inferences as the test parameter. Each subpanel shows results for
different EMA/rolling property span sets for the feature variables (listed in the subpanel titles), for different forecaster
target variables (regrets, losses and regret z-scores). The black dashed line shows the naive network inference (i.e. without
a contribution from forecasting models), while blue and orange lines show the median results for global and per-inferer
forecaster models, respectively. Violin plots show the distribution in log loss of 100 repeated tests for each model and
feature set combination, to check for variance due to hyperparameter optimization. In these tests, 1000 epochs are used
for training and 200 epochs for testing.

As expected, improvement of the forecasting models over the naive inference is more modest with live data than in
artificial experiments with controlled outperformance periods. With regret as a target, per-inferer models show significant
improvement over global models, as only the per-inferer model consistently outperforms the naive inference. All z-score
models outperform the naive inference in the median, with the per-inferer models generally outperforming the global
models (except for span sets [3,14] and [3,14,60], for which both models are similar). Models predicting losses do not
consistently outperform the naive network inference, with the global forecasting model still being the preferred setup
when losses are used as the target. However, the per-inferer loss models show much closer performance to the global loss
models than in the controlled experiments.

In this test, the best overall forecasting model is a per-inferer model with regret as a target and an EM A/rolling property
span set of [3,14] (median log loss = 1.779). For many span sets (e.g. [3,7], [14, 30]), per-inferer regret and z-score
models often exhibit similar performance. For a loss target, the best span set is [3,30] (median log loss = 1.797), while
for z-scores three span sets ([3,30], [7,30] and [14,30]) have similar levels of performance (mean log losses = 1.782—

ADI 2, 40-56 (2025)

50 Pfeffer et al.

Spans=[3] Spans=[7] Spans=[3,7]
= = Naive per-inferer = = Naive per-inferer = = Naive per-inferer
1.88 1 —— global 1.88 1 —— global 1.88 —— global
1.86 1.86 1.86 1
1.84 1.84 1.844
8 g -+ g
3 3 3
E 1.82 _g\ 1.82 g\ 1.82 —l_
e . — A L= ey | N I W e S [N —
Bl ey ———
4 \ 4 \ 4
1.80 1.80 1.80
1.78 4 —_ 1784 | o 1784 T
1.76 A 1.76 A 1.76 1
Regrets Losses Z-score Regrets Losses Z-score Regrets Losses Z-score
Spans=[3,14] Spans=[3,14,60] Spans=[3,30]
= = Naive per-inferer = = Naive per-inferer = = Naive per-inferer
1.88 1 —— global 1.88 1 —— global 1.88 —— global
1.86 1.86 1.86
1.84 1.84 1.844
o 0 0
8 ¥ g T g 1
o 1.82 A o 1.82 o 1.821
° -1 L °
5 "y’ i __"____; _________ __'* ____________
1.80 \ 1.80 L 1.80 < —
1.78 o 1.78 W 1784 .
1.76 A 1.76 A 1.76 1
T T T T T T T T T
Regrets Losses Z-score Regrets Losses Z-score Regrets Losses Z-score
Spans=[7,14] Spans=[7,30] Spans=[14,30]
= = Naive per-inferer = = Naive per-inferer = = Naive per-inferer
1.88 4 —— global 1.88 1 —— global 1.88 —— global
1.86 1.86 1.86
1.84 1.84 A 1.84

log Loss
-
00
N
I
|
!
I
|
1
1
1
log Loss
I
o]
N
I
|
!
i
1
1
1
-
S
1
1
log Loss
-
o]
N
I
|
1
|
I
I
B
!
1
1
1
1
|
I
1

__________ - —————
1.80 LA 1.80 = 1.80
-+ v I
178 1784 T Rl 1784 1
1.76 4 1.76 4 1.76
Regrets Losses Z-score Regrets Losses Z-score Regrets Losses Z-score

Figure 7: Span parameter optimization tests for LightGBM models with the Allora testnet ETH/USD 5 minute prediction
topic. Point and line styles are as in Figure 6. In these tests, 1000 epochs are used for training and 500 epochs for testing.

1.783, within the standard error of the median of ~ 0.001). Noticeably, the best performing span sets tend to have the
most compact distributions in log losses, i.e. they have the least dependence on variations in hyperparameter optimization.

In the tests, adding unnecessary features can often make performance worse (e.g. for per-inferer models, [3,14,60]
has higher median losses than [3,14]). Therefore, in Figure 8, we repeat the optimization tests with an ‘adaptive’ span
set that selects three individual spans for three groups of features, ordered as [gradients, rolling windows, EMAs], to test
if reduced feature sets can improve performance. For the per-inferer models, we find the adaptive span set [3,7,14] to
provide the best performance for both regret (median log loss = 1.782) and z-score models (median log loss = 1.785),
although with slightly larger losses (by ~ 0.003) than the best models in Figure 7. In the tests, longer span sets (i.e.
[7,14,30] and [14,30,60]) show reduced performance for regret and z-score targets. Longer spans are preferred for EMAs
compared to rolling windows, with the span set [3,7,14] outperforming both [3,7,7] and [3,14,7].

4.2 Training epoch tests

The previous tests used a fixed number of 1000 epochs for the training period. Providing more training data can potentially
improve model performance, at the expense of increased training times. However, data that are too old may degrade
forecaster performance if inferer performance evolves (e.g. through retraining) or, in the case of a regret target, the
combined network loss has significantly changed over time (thus shifting all regrets). Any improvements from increasing
the number of training epochs must therefore be balanced against the requirement to only train on relevant data.

ADI 2, 40-56 (2025)

Context-Aware Inference via Performance Forecasting 51

Adaptive spans=[3,7,7] Adaptive spans=[3,7,14] Adaptive spans=[3,14,7]
1.88 A = = Naive per-inferer 1.88 A = = Naive per-inferer 1.881 = = Naive per-inferer
—— global —— global —— global
1.86 1.86 1.86 1
1.84 1.84
I

1.80 1 1.80 ~—< 1.80 ~4
178{ | T 1.78 Nz 1784 T o
T T T T T T T T T
Regrets Losses Z-score Regrets Losses Z-score Regrets Losses Z-score
Adaptive spans=[3,14,60] Adaptive spans=[7,14,30] Adaptive spans=[14,30,60]
1.88 A = = Naive per-inferer 1.88 A = = Naive per-inferer 1.881 = = Naive per-inferer
—— global —— global —— global
1.86 1.86 1.86
1.84 A 1.84 A 1.841

[-1 () (]
1% —— [0 %] -
S S T S
= 1.82 2182 2182
° ° \ °
______________________________ Sl —— A - Ny
1.80 ? 1.80 7 1.80 L
1.78 A == 1.78 1.781
Regrets Losses Z-score Regrets Losses Z-score Regrets Losses Z-score

Figure 8: Adaptive span parameter optimization tests for LightGBM model with the ETH/USD 5 minute prediction topic.
The adaptive span set use three level for different groups of features, ordered as [gradients, rolling windows, EMAs].
Point and line styles are as in Figure 6.

In Figure 9-11, we retest the best three span sets ([3,14], [3,30] and adaptive [3,7,14], respectively) with increasing
numbers of training epochs (1000, 3000, 5000). Interestingly, in all cases the performance of per-inferer regret models
degrades as the number of training epochs is increased. For regret targets, the best model still has a span set of [3,14]
with 1000 epochs for training. This suggests long term variations (e.g. in the combined network loss) may affect the
performance of forecasters predicting regrets.

For both loss and z-score targets, the best performing models use 3000 training epochs, but in most cases 5000 training
epochs also outperforms 1000 training epochs. With increased training epochs (both for 3000 and 5000 epochs), per-
inferer models predicting losses can outperform global models and consistently outperform the naive inference, though
still fall behind the best regret and z-score models. This indicates their inability to compete with the global models in the
previous experiments was due to a lack of data. The best performing model with loss as the target property is the adaptive
span set [3,7,14] (median log loss = 1.791), followed closely by the span set [3,14] (median log loss = 1.794). The best
performing z-score span set becomes [3,14] (median log loss = 1.773), making it the best performing model of all tests,
with adaptive span set [3,7,14] the next best performing model (median log loss = 1.774). Overall, these tests show [3,14]
to be the most consistent span set across all target properties, followed by the adaptive span set [3,7,14].

4.3 Context awareness tests

In Figure 12 we compare the true and predicted target properties for the best span set ([3,14]) and number of training
epochs (1000 for regrets, 3000 for losses and z-scores) for the per-inferer models. Relative to the controlled experiments
(§3), context awareness of the forecasting models is more marginal with live network data. The main exception is for
the generally underperforming inferer (allolqdusx. .., red points), which shows relatively larger gradients in the loss and
z-score models compared to predictions for other inferers. For most inferers, the linear fits between true and predicted
properties show weak but positive gradients that are statistically significant (lower 1o confidence intervals on the gradients
of > 0, using bootstrapping of Huber regression).

For the regret target (middle panel), the model identifies many underperformance epochs for inferer allolqdusx. . . (red
points) at true regrets ~ — 1, but fails to predict the epochs with the lowest regrets (< —1.5). However, these lowest regrets
are often due to large temporary increases in the combined network loss, which shifts all inferers to lower regrets than
average, making them unpredictable. We note also that the inverse case is not true: large regrets (= 1) are due to genuine
(if temporary) outperformance of inferers, and not due to large changes in the network loss. The models predicting losses
and z-scores are unaffected by these shifts in the network loss (the former by definition, and the latter because all values

ADI 2, 40-56 (2025)

52 Pfeffer et al.

Training epochs: 1000 Training epochs: 3000 Training epochs: 5000
1.904 == Naive per-inferer 1.90 4 == Naive per-inferer 1.004 == Naive per-inferer
—— global —— global —— global
1.88 - 1.88 - 1.88
1.86 1.86 1.86 1
o 0 «
2 1.84 2 1.844 2 1.84-
— — —
g g g
= 1.8219 = 1.8219 = 1.82
o o o i s i) e e e e] -_ o o e e e e e o e]
1.80 A 1 - 1.80 A 1.80 /——\
1784 |~ 1.78 1.78 —-
i . -
- 4
1.76 A 1.76 A 1.76 q
Regrets Losses Z-score Regrets Losses Z-score Regrets Losses Z-score

Figure 9: Training epoch number optimization tests for LightGBM model with span set=[3,14] for the ETH/USD 5 minute
prediction topic. Point and line styles are as in Figure 6.

Training epochs: 1000 Training epochs: 3000 Training epochs: 5000
1.90 1 = = Naive per-inferer 1.901 = = Naive per-inferer 1.901 = = Naive per-inferer
—— global —— global —— global
1.88 1.88 1.884
1.86 1.86 1.86 1
0 1.84 A 9 1.84 A v 1.841
o o o
- - -
21.821 21.821 81.821 —l: Y
TCF———2ZI]""774 7] <__-F-‘< _________
1.80 \—E__—__— 1.80 1.80 \\
1.78 Y 1784 T 1.78 4 -
A A
1.76 1.76 1.76 4
Regrets Losses Z-score Regrets Losses Z-score Regrets Losses Z-score

Figure 10: Training epoch number optimization tests for LightGBM model with span set=[3,30] for the ETH/USD 5
minute prediction topic. Point and line styles are as in Figure 6.

Training epochs: 1000 Training epochs: 3000 Training epochs: 5000
= = Naive per-inferer = = Naive per-inferer = = Naive per-inferer
1.88 1 —— global 1.88 1 —— global 1.88 1 —— global
1.86 1.86 1.86 1
1.84 1.84 1.84 4
o 0 0
a @ 7
o o =]
3 3 3
3 1.82 4 __ —[5\1.82‘ 2 1.82 —l: - -
_______ = A N "
1.80 A ~— | 1.80 A 1.801 _\
1781 —— — 1784 _ A 4 1.78 A
1.76 A 1.76 A 1.76 1
Regrets Losses Z-score Regrets Losses Z-score Regrets Losses Z-score

Figure 11: Training epoch number optimization tests for LightGBM model with adaptive span set=[3,7,14] for the
ETH/USD 5 minute prediction topic. Point and line styles are as in Figure 6.

are calculated relative to the mean regret). The distribution of true regrets in this test is otherwise very concentrated within
41, unlike in the contextual outperformance test (Figure 5), which may account for the more modest improvement of the
forecast-implied inference losses over the naive inference loss in these tests (Figure 7-11).

For the model predicting losses (left panel), the outperformance of inferers is generally not predicted, i.e. the predicted
loss distribution tends to flatten at true losses < 1. This potentially indicates that random chance plays a role in the setting
the values of the lowest losses. Instead, the predictive power of losses comes from predicting the underperformance of
workers (losses > 1), for which there is a general trend of increasing predicted loss with true loss. The mean true losses are
similar for most workers (except the one underperforming model), which may explain the lower performance of models
with losses as a target compared to regrets and z-scores (Figure 7-11).

Relative to the model predicting regrets (middle panel), the z-score model (right panel) provides a more even spread

ADI 2, 40-56 (2025)

Context-Aware Inference via Performance Forecasting 53

Per-inferer model (LightGBM) Per-inferer model (LightGBM) Per-inferer model (LightGBM)
RMSE: 1.0623 i Inferer allo1968fa... ,” Inferer allolsup3q... ,/
3 Inferer allo19qefn... /’ 27 Inferer allol1tj7ag... /'
] Inferer Median /'] Inferer Median /'

=== lIdeal Fit Vil === Ideal Fit 4

Predicted Loss
Predicted Regret

Predicted Z-score Regret
o

-2 7 Inferer allolaujlf...
// Inferer allolqdusx...

_3 R4 1 Inferer Median

4 . T -2 4 ’

P -=- Ideal Fit L RMSE: 0.9797 21,7 RMSE: 0.9798
2 T T T T T T T T T T T T T T T T T T T
-3 =2 -1 0 1 2 3 -3 =2 -1 0 1 2 3 -2 -1 0 1 2
True Loss True Regret True Z-score Regret

Figure 12: ‘Context awareness’ test for per-inferer forecaster models with the best span set ([3,14]): true versus predicted
properties for models forecasting log losses (left panel, 3000 training epochs), regrets (middle panel, 1000 training
epochs) and regret z-scores (right panel, 3000 training epochs). Point and line styles are as in Figure 2. For clarity, only
200 testing epochs are shown, rather than 500 epochs as in Figure 7—11.

in values for the model to predict, particularly by compressing outliers at very large positive or negative regret values.
This appears to particularly aid in detecting underperformance (z-score < 1) for inferers allolqdusx. .. (red points) and
allo19gefn. .. (orange points), but the median predicted z-scores for these inferers are well above their median true z-
scores. In summary, regret and z-score models again perform better than loss models.

5 Discussion and Conclusion

In this work, we have introduced a model to forecast performance of inferences from participants in a decentralized
learning network. We tested a number of model structures (global, per-inferer), target variables (losses, regrets, regret z-
scores), feature sets (autocorrelation, EMA and rolling mean spans) and training epochs with both synthetic benchmarks
and live network data to identify the best performing model(s) for each test. The main findings of this work are as follows.

1. Dynamic weighting of predictions that relies only on historical performance is slow to adapt to changes in conditions
(e.g. the naive inference). So long as the right features can be identified for the machine learning model, performance
forecasting models can predict which workers are likely to be more accurate in a given context and weight them
higher in the inference combination (§3.2). Where the context for performance differences is more difficult to
predict, the forecasting model will tend towards predicting the mean performance of each worker (§4.3).

2. Per-inferer models (i.e. separate machine learning models for each inference worker) have more ‘context aware-
ness’ than global models (i.e. a single machine learning model with inferer ID as a feature) since they isolate the
performance of each worker (§3.1). In contrast, a global model can effectively stack similarly-performing worker
sets to increase training set size and reduce noise.

3. In both benchmark tests and tests with live data from the Allora testnet (Sections 3.2.1 and 4.3), forecasting models
with any of the target variables (losses, regrets, regret z-scores) reasonably predict the median performance, but
they have varying levels of success in predicting out- and underperformance. In benchmark tests, the z-score model
is most successful in the context awareness test due to its ability to identify outperformance epochs (Figure 5),
which is reflected in it being the most accurate model in parameter optimization tests (§3.2.2). In experiments with
live data, the best-performing models predicting regrets and regret z-scores have a similar level of accuracy (§4). In
practice, it may be beneficial to include multiple forecasting models with different targets such that they can adapt
to different situations.

4. Models predicting losses are the least accurate in both the benchmark and live data tests (3.2.2 and §4), despite
not being obviously poorer in context awareness tests (Figure 5 and Figure 12). This may be due to the weight
calculation, which requires the conversion of forecasted losses into approximate regrets using the network loss
from the previous epoch (§2.1). If the network loss is dramatically different from epoch to epoch, then this could
shift all regrets into the flat portion of the sigmoid weighting function (Equation 7), making the forecasted losses
irrelevant. If losses were instead centered on the mean loss at each epoch, this would effectively obtain the z-score
target model.

5. Naturally, feature sets should be optimized to the particular topic and model setup. For example, models with
different targets often perform better with different epoch spans for features (§3.2.2). Similarly, slight differences
in the optimal feature set spans are found between tests with synthetic benchmarks (§3.2.2) and live data (§4.1).

ADI 2, 40-56 (2025)

54 Pfeffer et al.

6. Increasing training epochs does not necessarily lead to better forecasting model performance (§4.2). This could be
due to changes in the performance of inference workers over time, for example due to retraining with new data,
such that the oldest data becomes stale.

7. In tests with live data (§4.3) the forecasting models (for all targets) struggle to predict outperformance. This might
indicate the impact of chance in inferences obtaining the lowest losses. However, underperformance does often
appear predictable, which helps to drive the improvement of the forecast-implied inferences over the naive inference
(Sections 4.1 and 4.2).

8. In some cases, there are large differences in the forecasting model performance depending on differing random
seeds for hyperparameter optimization (Sections 3.2.2 and 4.1), although the best performing models often have the
most compact distributions of mean log losses. Potentially, ensembling (averaging the same model with different
random seeds) could be used for more consistent performance, at the expense of increased computational costs.

In developing a performance forecasting model for decentralized learning networks, this work builds on a significant
body of literature on model combination and aggregation (e.g. see the recent review by Wang et al., 2023). However, it
differs in a number of fundamental respects compared to previous studies. Our forecasting model predicts performance of
inferences, which are then converted to combination weights, rather than predicting weights directly. Most studies using
machine learning to predict combination weights are aiming to optimize constant weights over a full time series (e.g.
Prudéncio & Ludermir, 2006; Lemke & Gabrys, 2010; Montero-Manso et al., 2020; Kang et al., 2022). Here, the model
makes predictions at every epoch in a time series such that the model can be context aware. As combination weights are
not a natural output of the learning network, they would need to be calculated independently at each epoch. However, for
a single epoch, such weights will be non-unique in all but the simplest cases. Additionally, the model must account for
differing inferer sets at different epochs. Even if ideal weights could be identified at each epoch, these may not be relevant
if the inferer set changes, so the weight and model would need to be retrained each time (e.g. consider a set where two
of the workers always have predictions on opposite sides of the true value, and one of the workers suddenly drops out of
the set). Although there exist models that combine multiple predictions at different epochs with machine learning, this is
achieved by predicting the combined value itself, rather than weights (e.g. using neural networks, Zhao & Feng, 2020).
In the case of forecasting workers for decentralized learning networks, weights are also required for scoring and reward
allocation (Kruijssen et al., 2024a).

This work is, of course, not intended to be a comprehensive performance forecasting model for all topics and tasks.
Rather, it is a demonstration of dynamic performance forecasting and a starting point for further development, and pro-
vides lessons and potential improvements for future work. As is generally the case in machine learning, feature choice and
engineering is a crucial aspect in enabling well-performing models. Care should be taken to identify important features
and optimize them for the particular topic and model set. Although the performance forecasting model was designed
and tested for use in a decentralized learning network, dynamic performance forecasting is applicable in any combination
problem where the most accurate models change on short timescales.

Data Availability and Acknowledgments

The standard performance forecaster model for the Allora network is available in the network’s Github repository at
https://github.com/allora-network/allora-forecaster. COOL Research DAO is a Decentralised Autonomous Organisation
supporting research in astrophysics aimed at uncovering our cosmic origins (Chevance et al., 2025).

References

Aiolfi, M. & Timmermann, A. 2006, Journal of Econometrics, 135, 31. https://doi.org/10.1016/j.jeconom.2005.07.015

Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. 2019, in Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, KDD *19 (New York, NY, USA: Association for Computing Machinery), 2623-2631.
https://doi.org/10.1145/3292500.3330701

Batchelor, R. & Dua, P. 1995, Management Science, 41, 68. https://doi.org/10.1287/mnsc.41.1.68
Bates, J. M. & Granger, C. W. J. 1969, OR, 20, 451. https://doi.org/10.2307/3008764

Borisov, V., Leemann, T., SeBler, K., et al. 2024, IEEE Transactions on Neural Networks and Learning Systems, 35, 7499.
https://doi.org/10.1109/TNNLS.2022.3229161

Chen, B. & Maung, K. 2023, Journal of Econometrics, 237, 105418. https://doi.org/10.1016/j.jeconom.2023.01.024

Chen, T. & Guestrin, C. 2016, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’16 (New York, NY, USA: Association for Computing Machinery), 785-794.
https://doi.org/10.1145/2939672.2939785

Chevance, M., Kruijssen, J. M. D. & Longmore, S. N. 2025, arXiv e-prints, arXiv:2501.13160.
https://doi.org/10.48550/arXiv.2501.13160

ADI 2, 40-56 (2025)

https://github.com/allora-network/allora-forecaster
https://doi.org/10.1016/j.jeconom.2005.07.015
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1287/mnsc.41.1.68
https://doi.org/10.2307/3008764
https://doi.org/10.1109/TNNLS.2022.3229161
https://doi.org/10.1016/j.jeconom.2023.01.024
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.48550/arXiv.2501.13160

Context-Aware Inference via Performance Forecasting 55

Clemen, R. T. 1989, International Journal of Forecasting, 5, 559. https://doi.org/10.1016/0169-2070(89)90012-5

Clemen, R. T. & Winkler, R. L. 1986, Journal of Business & Economic Statistics, 4, 39.
https://doi.org/10.1080/07350015.1986.10509492

Craib, R., Bradway, G., Dunn, X., & Krug, J. 2017, Numeraire: A Cryptographic Token for Coordinating Machine Intelligence and
Preventing Overfitting. https://numer.ai/whitepaper.pdf

Deutsch, M., Granger, C. W., & Terisvirta, T. 1994, International Journal of Forecasting, 10, 47. https://doi.org/10.1016/0169-
2070(94)90049-3

Diebold, F. X. & Pauly, P. 1987, Journal of Forecasting, 6, 21. https://doi.org/10.1002/for.3980060103
Dudek, G. 2023, Engineering Proceedings, 39. https://doi.org/10.3390/engproc2023039053
Elliott, G. & Timmermann, A. 2005, International Economic Review, 46, 1081. https://doi.org/10.1111/j.1468-2354.2005.00361.x

Gastinger, J., Nicolas, S., Stepic, D., Schmidt, M., & Schiilke, A. 2021, CoRR, abs/2104.11475.
https://doi.org/10.1109/IJCNN52387.2021.9533378

Genre, V., Kenny, G., Meyler, A., & Timmermann, A. 2013, International Journal of Forecasting, 29, 108.
https://doi.org/10.1016/].ijforecast.2012.06.004

Granger, C. W. J. & Ramanathan, R. 1984, Journal of Forecasting, 3, 197. https://doi.org/10.1002/for.3980030207

Kang, Y., Cao, W, Petropoulos, F., & Li, FE 2022, European Journal of Operational Research, 301, 180.
https://doi.org/10.1016/j.ejor.2021.10.024

Ke, G., Meng, Q., Finley, T., et al. 2017, in Proceedings of the 31st International Conference on Neural Information Processing Systems,
NIPS’17 (Red Hook, NY, USA: Curran Associates Inc.), 3149-3157.

Kolassa, S. 2011, International Journal of Forecasting, 27, 238. https://doi.org/10.1016/j.ijforecast.2010.04.006

Kruijssen, J. M. D., Emmons, N., Peluso, K., et al. 2024a, Allora Decentralized Intelligence, 1, 1.
https://doi.org/10.70235/allora.0x10001

Kruijssen, J. M. D., Valieva, R., & Longmore, S. N. 2025, Allora Decentralized Intelligence, 2, 1.
https://doi.org/10.70235/allora.0x20001

Kruijssen, J. M. D., Valieva, R., Peluso, K., Emmons, N., & Longmore, S. N. 2024b, Allora Decentralized Intelligence, 1, 20.
https://doi.org/10.70235/allora.0x 10020

Kiick, M., Crone, S. F., & Freitag, M. 2016, in 2016 International Joint Conference on Neural Networks (IJCNN), 1499-1506.
https://doi.org/10.1109/IJCNN.2016.7727376

Lemke, C. & Gabrys, B. 2010, Neurocomputing, 73, 2006, subspace Learning / Selected papers from the European Symposium on
Time Series Prediction. https://doi.org/10.1016/j.neucom.2009.09.020

LeSage, J.. P & Magura, M. 1992, Journal of Business & Economic Statistics, 10, 445.
https://doi.org/10.1080/07350015.1992.10509920

Lichtendahl, K. C. & Winkler, R. L. 2020, International Journal of Forecasting, 36, 142, m4 Competition.
https://doi.org/10.1016/j.ijforecast.2019.03.027

Makridakis, S., Spiliotis, E., & Assimakopoulos, V. 2020, International Journal of Forecasting, 36, 54, m4 Competition.
https://doi.org/10.1016/].ijforecast.2019.04.014

Makridakis, S., Spiliotis, E., & Assimakopoulos, V. 2022, International Journal of Forecasting, 38, 1346, special Issue: M5 competition.
https://doi.org/10.1016/j.ijforecast.2021.11.013

Montero-Manso, P., Athanasopoulos, G., Hyndman, R. J., & Talagala, T. S. 2020, International Journal of Forecasting, 36, 86, m4
Competition. https://doi.org/10.1016/j.ijforecast.2019.02.011

Newbold, P. & Granger, C. W. J. 1974, Journal of the Royal Statistical Society. Series A (General), 137, 131.
https://doi.org/10.2307/2344546

Oreshkin, B. N., Carpov, D., Chapados, N., & Bengio, Y. 2020, in International Conference on Learning Representations.
https://openreview.net/forum?id=rlecqn4 YwB

Petropoulos, F. & Svetunkov, [. 2020, International Journal of Forecasting, 36, 110, m4 Competition.
https://doi.org/10.1016/j.ijforecast.2019.01.006

Prudéncio, R. & Ludermir, T. 2006, in Artificial Neural Networks — ICANN 2006, ed. S. D. Kollias, A. Stafylopatis, W. Duch, & E. Oja
(Berlin, Heidelberg: Springer Berlin Heidelberg), 274-283. https://doi.org/10.1007/11840817_29

Rao, Y., Steeves, J., Shaabana, A., Attevelt, D., & McAteer, M. 2021, BitTensor: A Peer-to-Peer Intelligence Market.
https://doi.org/10.48550/arXiv.2003.03917

Reid, D. J. 1968, Economica, 35, 431. https://doi.org/10.2307/2552350
Sessions, D. N. & Chatterjee, S. 1989, Journal of Forecasting, 8, 239. https://doi.org/10.1002/for.3980080309
Shwartz-Ziv, R. & Armon, A. 2022, Information Fusion, 81, 84. https://doi.org/10.1016/j.inffus.2021.11.011

ADI 2, 40-56 (2025)

https://doi.org/10.1016/0169-2070(89)90012-5
https://doi.org/10.1080/07350015.1986.10509492
https://numer.ai/whitepaper.pdf
https://doi.org/10.1016/0169-2070(94)90049-3
https://doi.org/10.1016/0169-2070(94)90049-3
https://doi.org/10.1002/for.3980060103
https://doi.org/10.3390/engproc2023039053
https://doi.org/10.1111/j.1468-2354.2005.00361.x
https://doi.org/10.1109/IJCNN52387.2021.9533378
https://doi.org/10.1016/j.ijforecast.2012.06.004
https://doi.org/10.1002/for.3980030207
https://doi.org/10.1016/j.ejor.2021.10.024
https://doi.org/10.1016/j.ijforecast.2010.04.006
https://doi.org/10.70235/allora.0x10001
https://doi.org/10.70235/allora.0x20001
https://doi.org/10.70235/allora.0x10020
https://doi.org/10.1109/IJCNN.2016.7727376
https://doi.org/10.1016/j.neucom.2009.09.020
https://doi.org/10.1080/07350015.1992.10509920
https://doi.org/10.1016/j.ijforecast.2019.03.027
https://doi.org/10.1016/j.ijforecast.2019.04.014
https://doi.org/10.1016/j.ijforecast.2021.11.013
https://doi.org/10.1016/j.ijforecast.2019.02.011
https://doi.org/10.2307/2344546
https://openreview.net/forum?id=r1ecqn4YwB
https://doi.org/10.1016/j.ijforecast.2019.01.006
https://doi.org/10.1007/11840817_29
https://doi.org/10.48550/arXiv.2003.03917
https://doi.org/10.2307/2552350
https://doi.org/10.1002/for.3980080309
https://doi.org/10.1016/j.inffus.2021.11.011

56 Pfeffer et al.

Steeves, J., Shaabana, A., Hu, Y., et al. 2022, Incentivizing Intelligence: The Bittensor Approach, https://bittensor.com/academia.
https://ai-secure.github.io/DMLW?2022/assets/papers/6.pdf

Stock, J. H. & Watson, M. W. 2004, Journal of Forecasting, 23, 405. https://doi.org/10.1002/for.928
Talagala, T. S., Hyndman, R. J., & Athanasopoulos, G. 2023, Journal of Forecasting, 42, 1476. https://doi.org/10.1002/for.2963
Terui, N. & van Dijk, H. K. 2002, International Journal of Forecasting, 18, 421. https://doi.org/10.1016/S0169-2070(01)00120-0

Timmermann, A. 2006, in Handbook of Economic Forecasting, 1st edn., ed. G. Elliott, C. Granger, & A. Timmermann, Vol. 1 (Elsevier),
135-196. https://doi.org/10.1016/S1574-0706(05)01004-9

Wang, X., Hyndman, R. J, Li, F, & Kang, Y. 2023, International Journal of Forecasting, 39, 1518.
https://doi.org/10.1016/j.ijforecast.2022.11.005

Zhao, S. & Feng, Y. 2020, For2For: Learning to forecast from forecasts. https://arxiv.org/abs/2001.04601

ADI 2, 40-56 (2025)

https://ai-secure.github.io/DMLW2022/assets/papers/6.pdf
https://doi.org/10.1002/for.928
https://doi.org/10.1002/for.2963
https://doi.org/10.1016/S0169-2070(01)00120-0
https://doi.org/10.1016/S1574-0706(05)01004-9
https://doi.org/10.1016/j.ijforecast.2022.11.005
https://arxiv.org/abs/2001.04601

	Introduction
	Forecaster design
	Decentralized learning network
	Forecaster model
	Forecaster target variable
	Feature set

	Synthetic benchmarks
	Periodic outperformance
	Contextual outperformance
	Context awareness
	Parameter optimization

	Experiments with the Allora network
	Span parameter optimization tests
	Training epoch tests
	Context awareness tests

	Discussion and Conclusion

